If it's not what You are looking for type in the equation solver your own equation and let us solve it.
123-x^2=10(x)
We move all terms to the left:
123-x^2-(10(x))=0
determiningTheFunctionDomain -x^2-10x+123=0
We add all the numbers together, and all the variables
-1x^2-10x+123=0
a = -1; b = -10; c = +123;
Δ = b2-4ac
Δ = -102-4·(-1)·123
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{37}}{2*-1}=\frac{10-4\sqrt{37}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{37}}{2*-1}=\frac{10+4\sqrt{37}}{-2} $
| 5x-7(-5x+1)=273 | | K/8+21=o97 | | 3q-2q-q+2q=16 | | e+12=22 | | 42/7=a | | 3x+4+x+90=180 | | -3+u=-9 | | 25=5+z | | x/100=12/14 | | 53+2x=7(-x=3)-40 | | 3a+21=7-7a | | p-19=5 | | 1v-1=6 | | -48÷3=x | | 3r-5=2 | | 25=-5t-5 | | 19=x/2+5 | | 12=f-14 | | 3r-5=3 | | 10x-8x+4=2 | | 15-x4=17 | | 3(c-18)=24 | | -3k+6=10 | | 19=c+8 | | 6(c-15)=30 | | -3(5a-1)=18 | | 7x-5=x-53 | | 24.75d+40=24.75d+40 | | 8x-27+2x+33=180 | | 5.11=m-4 | | 5-t=7t-21 | | -2x+5=1 |